
504-REN-UI-ImplG

MISSION OPERATIONS AND DATA SYSTEMS DIRECTORATE

Renaissance User
Interface Implementation

Guide

August 1994

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland

504-REN-UI-ImplG

Renaissance User
Interface Implementation

Guide

Prepared for

GODDARD SPACE FLIGHT CENTER

By

COMPUTER SCIENCES CORPORATION

Under

Contract No. NAS5-31500

August 1994

Reviewed by:

XXXX Date

XXXX Date

Approved by:

XXXX Date

XXXX Date

XXXX Date

1 504-REN-UI-ImplG

Abstract

This Renaissance User Interface Implementation Guide provides a framework that encourages
consistency among user interfaces being enhanced or developed for use within the Renaissance
project within the Mission Operations and Data Systems Directorate. The guide is intended
primarily for system developers who need guidelines on developing user interface software that
will be both intuitive to the user and easy to integrate with the other software building blocks
used within the Renaissance software architecture. A secondary audience is Renaissance systems
users who can gain information on the underlying user interface design principles inherent in the
systems that they will be operating.

i 504-REN-UI-ImplG

Preface

This document represents the preliminary version of the Renaissance User Interface
Implementation Guide. This version has focused on preparation of material necessary to define
the standards and guidelines for the Renaissance user interface building blocks that will be used
to support the Advanced Composition Explorer mission. Therefore, the standards and guidelines
found in Section 2 can be viewed as complete. The later sections of the document were deemed
less critical to this initial stage of Renaissance and are incomplete.

ii 504-REN-UI-ImplG

Change Information Page

List of Effective Pages

Page Number Issue

All Original

Document History

Document Number Status/Issue Publication Date CCR Number

Original August 1994

iii 504-REN-UI-ImplG

DCN Control Sheet

DCN
Number

Date/Time
Group

Month/
Year

Section(s)
Affected

Initials

iv 504-REN-UI-ImplG

Contents

Section 1. Introduction

1.1 Purpose and Scope ...1-1

1.2 Document Organization ...1-1

1.3 Related Documents ..1-1

1.4 Terminology...1-2

Section 2. User Interface Standards and Guidelines

2.1 Renaissance User Interface Goals..2-1

2.2 User Interface Standards ..2-1

2.2.1 X Window System, Version 11 ..2-2
2.2.2 Open Software Foundation Motif...2-2
2.2.3 Common Desktop Environment ...2-2
2.2.4 Renaissance Style Principles ..2-3

2.3 Renaissance Standards ...2-3

2.3.1 Implementation Language ..2-3
2.3.2 Portable Operating System Interface for UNIX ...2-4
2.3.3 Renaissance Development Standards ...2-4

2.4 User Interface Guidelines...2-4

2.4.1 Data Import/Export to Other Applications and Devices...................................2-5
2.4.2 Scripting (Macro) Capabilities ...2-5
2.4.3 Customizable by User...2-6
2.4.4 Decoupled From Underlying Application ..2-6
2.4.5 Separation of User Interface Layout and Code...2-7
2.4.6 Provides Custom Widgets...2-7

2.5 Renaissance Guidelines..2-8

2.5.1 Platforms Supported ...2-8
2.5.2 Commercial Off-the-Shelf Usage ...2-8
2.5.3 Renaissance Interface Compatibility ..2-8
2.5.4 Documentation..2-9
2.5.5 Maturity ..2-9
2.5.6 Online Help Facility ...2-10
2.5.7 Performance..2-10
2.5.8 Portability ...2-10

v 504-REN-UI-ImplG

2.5.9 Availability of Support ...2-10
2.5.10 Verbatim Reuse From Mission to Mission...2-11

Section 3. Methodology for User Interface Development

3.1 Software Reuse Process ...3-1

3.1.1 Review Existing Building Blocks...3-1
3.1.2 Itemize New Capabilities..3-1
3.1.3 Determine Scope of Effort..3-1
3.1.4 Initiate Development ..3-1

3.2 User Interface Development Process ...3-1

3.2.1 Object-Oriented Concepts ..3-2
3.2.2 Spiral Development ..3-3
3.2.3 Joint Application Design ..3-5
3.2.4 Completion of the User Interface Process ..3-7

3.3 Widget Development Process ..3-7

Section 4. Style Principles

Section 5. Renaissance Controls, Groups, and Models
Reference Pages

Appendix. Certification Checklist

Abbreviations and Acronyms

References

Figures

3–1 Spiral Development Methodology ...3-3

3–2 User Interface System Environment ..3-4

3–3 Development Products ...3-6

vi 504-REN-UI-ImplG

Section 1. Introduction

1.1 Purpose and Scope

This Renaissance User Interface Implementation Guide provides a framework that encourages
consistency among user interfaces being enhanced or developed for use within the Renaissance
project within the Mission Operations and Data Systems Directorate (MO&DSD). The guide is
intended primarily for system developers who need guidelines on developing user interface
software that will be both intuitive to the user and easy to integrate with the other software
building blocks used within the Renaissance software architecture. A secondary audience is
Renaissance systems users who can gain information on the underlying user interface design
principles inherent in the systems that they will be operating.

This document is maintained by the User Services Working Group (USWG), which reports to the
MO&DSD Renaissance Team. The working group will update the document to reflect any
changes made to the selections of user interface technology or principles for Renaissance.

1.2 Document Organization

This document is divided into five sections and one appendix. The first section provides
background information on the purpose and organization of the document. Section 2 describes
each of the standards and guidelines that have been identified to ensure that the goals set for the
Renaissance user interface are being met. Section 3 describes the recommended process for
developing user interface software targeted for a Renaissance system. Section 4 defines the user
interface style principles that govern the "look and feel" of Renaissance user interfaces. This
section shows how the basic Open Software Foundation (OSF)/Motif Style Guide (Reference 1)
look and feel has been augmented for the Renaissance project. Section 5 provides detailed
information on the new components available to Renaissance user interface developers that are in
addition to the standard set supplied with Motif. Finally, the appendix contains a certification
checklist that can be used in conjunction with the OSF/Motif checklist to verify the compliance
of a user interface with the principles spelled out in this document.

1.3 Related Documents

The following documents provide additional information about Renaissance, the USWG, or
OSF/Motif:

• Open Software Foundation (OSF)/Motif Style Guide

• Renaissance Standards

• Renaissance User Services Transition Plan

• Renaissance User Services Building Block Specifications

1-1 504-REN-UI-ImplG

1.4 Terminology

The following terms are defined in this section and appear throughout the document:

Application: A software element external to the sphere of the USWG for which the USWG must
provide a user interface. Although many applications will fall into the sphere of the Applications
Services Working Group, this definition permits elements from the data services, simulation, and
spacecraft communication working groups to be considered applications. This term is most
commonly used in this document to refer to the non-user interface related portion of a software
function.

Building block: A loose term for a generic or tailored subsystem, element, or subelement.

Component: An element within a graphical user interface (GUI) that is identifiable to the user as
a distinct entity. Examples of components include pushbuttons, menu bars, and text fields.

Generic: A generic system, subsystem, element, or subelement is one that is always used with
no modifications from mission to mission. Mission configurability may be achieved through data
parameters or through tailoring.

Guideline: A characteristic of a software building block that can be evaluated to determine the
degree of applicability that the building block possesses for use within the Renaissance
environment. Guidelines will be used both to steer the development of new building blocks and
to evaluate the legacy building blocks available within MO&DSD to determine which should
become the baseline set of Renaissance building blocks.

Mission-specific: A mission-specific system, subsystem, element, or subelement is one that is
developed and managed for a specific mission.

Software backplane: The set of Renaissance-standard applications programming interfaces
(APIs) for providing communications between software elements. Conceptually, elements "plug
into" the standard interfaces of the backplane (in analogy to a hardware backplane).

Software element: An independently executing software unit that communicates with other
software elements solely through the standard interfaces defined by the Renaissance software
backplane. A software element is constructed from subelements that may be linked together or
may be separate tasks or processes. Subelements within a software element may communicate
among themselves by means other than the backplane.

Software subelement: A configuration-controlled component of one or more software elements.
Subelements may themselves have structure, but the subelement level is the lowest level of
concern for configuration of a system for a particular mission.

Standard: A set of principles, conventions, and/or programming interfaces established by either
the computer industry or the Renaissance team to govern the development of software. The
X Window System, OSF/Motif, and Common Desktop Environment (CDE) are all examples of
industry standards.

1-2 504-REN-UI-ImplG

Subsystem: A standard decomposition of a system, encompassing those software elements
necessary to carry out a specific high-level functional area. For example, Spacecraft Operations
Monitoring and Mission Planning might be subsystems (these examples are for illustrative
purposes only and do not imply a definitive decomposition of Renaissance systems).

System: A complete operational environment with clear boundaries and well-defined external
interfaces crossing these boundaries, such as the Mission Operations Center, Science Operations
Center, and Spacecraft Integration and Test systems.

Tailored: A tailored system, subsystem, element or subelement is one with some mission-
specific code added to a generic part in some standard way (e.g., linked in via well-defined
hooks).

User interface: A software element that falls within the sphere of the USWG. Thus, from the
point-of-view of the USWG, all software elements are either applications or user interfaces.

Widget: A software subelement that conforms to the X toolkit and Motif widget library
standards for implementing user interface components. Examples of widgets are XmPushButton
and XmTextField. Custom widgets created for the National Aeronautics and Space
Administration (NASA) environment are also discussed in this document.

1-3 504-REN-UI-ImplG

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

Section 2. User Interface Standards and Guidelines

2.1 Renaissance User Interface Goals

Effectively merging the ground support system functionality traditionally provided by
MO&DSD into an integrated system requires that the user perceive the system as a single logical
entity. A critical factor in this perception is the consistency between the user interface elements
presented to the user. Achieving consistency is the foremost goal for the development of
Renaissance user interfaces and also the primary intent of this document. Several secondary
goals have also been defined. Renaissance user interface goals are as follows:

• Maintain consistent look and feel among user interface elements

• Improve ease of use over user interfaces found in MO&DSD legacy systems

• Empower the users, giving them control over the applications they operate

• Maintain compliance with industry and open systems standards

• Reduce effort required to develop, enhance, and maintain new user interfaces

• Involve users in the development of user interfaces

The standards and guidelines that are steering the Renaissance user interface development have
been selected with these goals in mind and are presented in detail in this section. Adhering to
these principles should ensure that the user interfaces used by Renaissance will converge into a
consistent, natural, and powerful environment for users of spacecraft ground data systems.

The standards and guidelines have been divided into four sections. The sections have been
chosen to each represent a single quadrant on the following diagram:

Section
2.2

Section
2.3

Section
2.4

Section
2.5

User Interface Renaissance

Standards

Guidelines

2.2 User Interface Standards

This section describes the user interface standards that have been chosen for Renaissance. The
first three subsections describe computer industry standards representing the most prevalent user

2-1 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

interface technology on UNIX workstations at this time. The fourth standard, Renaissance style
principles, is a merger of the industry style conventions detailed in Reference 1 and the specific
Renaissance conventions described in Section 4 of this document.

Each subsection briefly describes the item and then lists the key attributes that a Renaissance
user interface building block needs to meet the intent of this standard.

2.2.1 X Window System, Version 11

The X Window System is the industry-standard window environment for a network of
cooperating workstations, personal computers (PCs), and X-terminals. First released by the
Massachusetts Institute of Technology (MIT) in the late 1980s, X has blossomed into the core
technology that makes GUIs possible on a network driven by UNIX workstations. Because
UNIX workstations have been designated the platform of choice for Renaissance, the X Window
System is the natural choice for a windowing system.

X Window System Release 5 (X11R5) is widely in use at this time, and products built on this
version of the software are available from most vendors. This release is also the version of X that
has been chosen for CDE. X Window System Release 6 is now available from MIT, but has not
yet been included in software releases from major vendors.

Key Attributes: Renaissance user interface building blocks shall be based on X11R5 or greater.

2.2.2 Open Software Foundation Motif

The OSF/Motif window manager and widget library are software products layered on top of the
X Window System to provide a standard look and feel to a GUI. Motif was first released in 1989
and has become the toolkit of choice on UNIX workstations over its rival, OpenLook from Sun
Microsystems. The Motif style is also well documented in the OSF/Motif Style Guide, which
enforces a consistent presentation of information and style of interaction between a graphical
application and its user. Because Motif is the standard look and feel for the UNIX environment,
it is the natural choice for Renaissance.

Motif Release 1.2, based on X11R5, is widely supported by UNIX vendors at this time.
Release 1.2.3 has been chosen as the initial version for CDE. Release 1.2.4 has also recently
come available.

Key Attributes: Renaissance user interface building blocks shall be based on Motif
Release 1.2.3 or greater.

2.2.3 Common Desktop Environment

CDE is a attempt by UNIX workstation vendors to create a standard user environment such as
those existing for Macintosh users across all Macintosh PCs or with the Windows environment
for PC users. Announced in late 1993 by the Common Open Software Environment consortium
of vendors, CDE builds on the most prevalent user interface technology available for UNIX
systems at this time. X11R5 and Motif Release 1.2.3 are the most important components of CDE.
Other user interface technologies included in CDE are the Hewlett-Packard (HP) Visual User
Environment, which provides a graphical interface to the UNIX desktop; an expanded version of

2-2 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

the OSF/Motif Style Guide called the CDE User Interface Style Guide; and the X Window
Inter-Client Communications Conventions Manual (ICCCM), which specifies how
X applications should communicate with each other.

CDE development toolkits should be available to UNIX vendors in 1994. Actual releases of this
suite of technology by the vendors will probably not occur until 1995. Two levels of integration
with CDE have been specified: basic and full. Renaissance user interface building blocks will
need to work to become as closely integrated with CDE as possible to form a consistent
environment for users of Renaissance systems.

Key Attributes: Renaissance user interface building blocks shall support CDE basic integration
by the end of calendar year 1995. The requirements for full integration with CDE are TBS.

2.2.4 Renaissance Style Principles

The Renaissance user environment is based on the look and feel for GUIs described in
Reference 1. This industry document will guide the development of all Renaissance user
interfaces. The Renaissance project will document any additions or subtractions to Motif's list of
style requirements within Section 4 of this document. The appendix provides a checklist that
itemizes each new Renaissance requirement and each Renaissance change to the standard Motif
rules. This checklist can be combined with the checklist in the OSF/Motif Style Guide to
completely analyze the conformance of a building block with the Renaissance style principles.

The OSF/Motif Style Guide has been available since Motif’s introduction 1989. It is updated
with each major Motif release (current version is 1.2) and will be superseded by the CDE User
Interface Style Guide within the next few years.

Key Attributes: Renaissance user interface building blocks shall be compliant with the
OSF/Motif Style Guide. The only exceptions to this rule are exemptions from normal style guide
principles that have been listed in Section 4 or the appendix of this document. In addition,
building blocks shall be fully compliant with the Renaissance-specific requirements of Section 4
and the appendix by the end of calendar year 1995.

2.3 Renaissance Standards

This section describes the Renaissance projectwide standards that apply to work within the user
services. The complete set of Renaissance standards is documented in Renaissance Standards
(Reference 2). The first two subsections describe computer industry standards reflecting the most
common technologies for developing a reusable, portable software base on UNIX workstations at
this time. The third item, Renaissance development standards, is included to ensure that a
common approach is taken for developing and maintaining Renaissance software components.

Each subsection briefly describes the item and then lists the key attributes that a Renaissance
user interface building block needs to meet the intent of this standard.

2.3.1 Implementation Language

The architecture working group is specifying Renaissance-wide standards for development,
including a list of acceptable implementation languages. These languages have been chosen

2-3 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

based on criteria such as breadth of use, portability, features, and support for object-oriented
programming.

Renaissance currently allows new development in C, C++, and Ada. The latter two object-
oriented languages are preferable because the long-term software architecture for Renaissance is
anticipated to be based on an object broker model. Legacy code written in FORTRAN may also
be included in a Renaissance building block, though no new FORTRAN development is
anticipated. Also note that the X Window System toolkit requires that custom widgets be
developed in C.

Key Attributes: Renaissance user interface building blocks shall be coded in C or C++ if
possible for ease of integration with the X Window System and Motif. C is preferred for custom
widgets; C++ is the language of choice for a new software part.

2.3.2 Portable Operating System Interface for UNIX

The portable operating system interface for UNIX (POSIX) standards have been developed by
the computer industry to promote portability of software across hardware platforms developed by
different vendors. In particular, the POSIX 1003.1 standard defines an API for software that
requires system calls for process management, device input/output (I/O), and file system I/O.
Likewise, the draft POSIX 1003.4 standard defines an API for real-time extensions to the base
1003.1 standard. Renaissance software building blocks should make POSIX calls whenever
possible to ensure platform independence.

Key Attributes: Wherever possible, system calls used by Renaissance user interface building
blocks shall conform to the POSIX 1003.1 standard or the 1003.4 draft standard for real-time
extensions. It is recognized that POSIX may only define a subset of the full functionality
required by some Renaissance software parts. For those cases, where additional system calls are
absolutely essential, this less portable code shall be isolated in separate files or libraries and
documented accordingly.

2.3.3 Renaissance Development Standards

The Renaissance Architecture/Communications Working Group (ACWG) is developing
specifications to define the standard mechanisms for developing and maintaining Renaissance
building blocks. An example of a development standard would be a tool to allow software to be
built across multiple hardware platforms (e.g., Imake). A standard selection of such a tool would
allow the entire Renaissance reusable software library to be installed on a new platform in a
single operation. The Renaissance development standards are TBS at this time.

Key Attributes: Renaissance user interface building blocks shall be developed according to the
implementation standards defined in Section 3.4 of Reference 2.

2.4 User Interface Guidelines

This section describes the user interface guidelines that have been chosen for Renaissance. The
first three guidelines have been chosen to evaluate the consistency and ease of use of a building
block. The final three items are included to reflect the ease of maintenance and reusability of the

2-4 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

user interface software by analyzing the decoupling of the software from any specific
application, layout, or object behavior.

Each subsection briefly describes the item and then lists the key attributes that a Renaissance
user interface building block needs to meet the intent of this guideline.

2.4.1 Data Import/Export to Other Applications and Devices

The Renaissance user environment needs to operate as a single, integrated entity even though the
software building blocks within that environment have been developed by different organizations
and each have a unique heritage. A key element of any integrated user environment is the ability
to share data among tools and devices within that environment. Thus, Renaissance user interface
building blocks need to support a certain level of data interchange.

With Motif Release 1.2, a standard was released for "drag and drop" behavior within a Motif
application or between Motif applications. Drag and drop is one of four approved Motif
techniques for transferring data in a Motif environment. The other notable mechanism of these
four is transfer of data through the clipboard. Because Renaissance user interfaces must conform
to the OSF/Motif Style Guide, any data transfer between or within building blocks should use
one of the style guide-approved techniques. Data import and export also should be supported to
files and printers.

Key Attributes: Renaissance user interface building blocks shall support the following data
import and export operations where appropriate:

• Print data to a Postscript laser printer

• Import data from other user interface elements through a Motif-approved
transfer technique

• Export data to other user interface elements through a Motif-approved transfer
technique

2.4.2 Scripting (Macro) Capabilities

The Renaissance operations concept calls for a minimal staff of Mission Operations Team
personnel, with the reduction in size made possible in part by a high degree of automation of
operational activities. This concept, translated into the realm of user interface building blocks,
means that all user interfaces should have a method for scripting user operations to allow for
automation of frequently repeated tasks. This automation can be achieved within a user services
building block in any of the following ways (in order of most to least complex to the user):

• Scripting language that allows preprogramming of operational procedures and
alternate flows of control through the scripts

• Macro definition capability that allows multiple user operations to be chained
together into a single operation

• Recording mechanism that automatically captures user activity and records the
sequence for later playback

2-5 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

Also note that Renaissance user activity may be scripted across software building blocks. The
standard mechanism for sequencing operations will be a shell script. Because an updated version
of the Korn shell is part of the CDE specification, Korn shell scripts are the recommended
approach for sequencing operations between building blocks. Note that in most cases, these
scripts can be developed by mission development teams and do not need to be explicitly
delivered with the software for a particular building block.

Key Attributes: Renaissance user interface building blocks shall internally allow the user to
automate repetitive user tasks through a scripting capability. This requirement may be satisfied
through a scripting language, a macro definition capability, or an equivalent functionality.
Furthermore, building blocks shall provide the capability to be invoked with a single UNIX
command or script invocation so that building block operations can be automated with shell
scripts.

2.4.3 Customizable by User

GUIs have significantly increased the ease of use of computer systems. Most early graphical
interfaces imposed a fixed layout of menu options with built-in fonts and colors. However,
modern user interface software is expected to be easily customized by the user. Color, font, and
icon and menu selection is left up to a user's discretion in most of today's PC-based commercial
applications.

Although the Renaissance user environment does not have quite as stringent a set of
requirements for personalizing user environments as today's commercial software, some basic
level of capability in this area is mandatory. Most important is that different projects or
installations of a user interface building block can tailor stylistic elements of a user interface to
their taste. In some applications, projects will also require the ability to design their own user
interface panels, as well. Customization on a per-user basis is less important because most
Renaissance workstations will be shared among several users during the course of a given day,
perhaps without a new user session being started.

Key Attributes: Renaissance user interface building blocks shall allow the user to tailor certain
attributes of a user interface according to personal preference, for example, placement of entries
on menus, color assignments, and fonts. The building blocks also shall allow user definition of
new display windows as appropriate to the application.

2.4.4 Decoupled From Underlying Application

The Renaissance approach to system development has partitioned ground data systems into
service areas such as user services, data services, and application services. To facilitate this
functional division, as well as meet the traditional software design principle that the presentation
layer of a software product should be separate from the underlying application, Renaissance user
interface building blocks should only be loosely coupled with the application for which they
provide the human-machine interface. Keeping the user interface software separate from the
underlying application should allow the user interface building block to evolve to meet the
standards, guidelines, and style principles found in this document without any impact to the
application it supports.

2-6 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

Key Attributes: The software for Renaissance user interface building blocks shall be maintained
separately from the code for the underlying application, and the two shall execute as separate
software processes. These two elements that compose a complete application shall communicate
as defined in the specification for the Renaissance software backplane (Reference 3).

2.4.5 Separation of User Interface Layout and Code

User interface design is often most successful when the developer and user work closely in an
iterative manner to refine the user interface, especially in terms of display layout and
presentation. Therefore, the portions of a user interface that are most likely to change are the
screen layouts, colors, and fonts—all aspects of a user interface's look and feel, not the
underlying application code.

Changes to colors and fonts were discussed in Section 2.4.4. However, the issue of ease of
maintenance for a user interface's layout remains. Several commercial tools and standards exist
to facilitate maintenance of user interface layouts. The User Interface Language (UIL) provided
with Motif is becoming a defacto standard for representing user interface layouts. Furthermore,
tools such as Builder Xcessory and UIM/X allow interface layouts to be maintained with a
graphical layout tool instead of in a formal language. Support for UIL layouts and integration
with tools of this nature is strongly encouraged for Renaissance user interface building blocks.

Key Attributes: Renaissance user interface building blocks shall allow user interface layouts to
be maintained independently of the underlying user interface and application software. Changes
to layouts shall not require corresponding code modifications, recompilation, and/or relinking of
the building block software.

2.4.6 Provides Custom Widgets

Although the standard Motif widget set contains most of the basic components needed to create a
GUI, additional objects are required for the satellite control and real-time display monitoring
environment. Several projects within MO&DSD have already created custom widgets based on
the class structure provided with the Motif widget set. Because these software components have
already been written within a highly stylized object-oriented framework, they can be readily
shared among user interface building blocks.

The USWG has therefore decided that a Renaissance widget library should be initiated to pool
these new display objects into a single software library. Once formed, this library will be
augmented as new widgets are needed by a building block. Furthermore, this library will be
enhanced so that consistency is achieved between widgets developed by different organizations
within MO&DSD. The ability to accommodate widgets from this library and commercial sources
should be included in Renaissance user interface building blocks, where appropriate.

Key Attributes: Any custom widgets developed for Renaissance user interface building blocks
that are of general utility shall be contributed to the Renaissance widget library for use by other
building blocks. These widgets shall be implemented and documented according to the standards
for Renaissance widgets included in Section 3 of this document, which includes complete
information on how to resolve make/buy/build/reuse decisions considering use of widgets in user
interface building blocks.

2-7 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

2.5 Renaissance Guidelines

This section describes the Renaissance projectwide guidelines that apply to work within the user
services. These 10 principles reflect the compatibility of a component with the Renaissance
software environment, the maturity of the code, supporting documentation, and support facilities,
and the degree of portability across platforms and missions.

Each subsection briefly describes the item and then lists the key attributes that a Renaissance
user interface building block needs to meet the intent of this guideline.

2.5.1 Platforms Supported

The Renaissance ACWG is currently defining the hardware architecture for near-term
Renaissance missions. Although every attempt will be made to standardize the hardware
platforms both within a single ground data system and across missions, Renaissance software
building blocks will need to be ported to new hardware platforms over time, at least to take
advantage of technological advances within a single vendor's product line.

One way to achieve software portability is to routinely maintain software components on more
than one platform. Thus, Renaissance building blocks should be routinely built and tested on at
least two reference platforms. The initial reference platform for Renaissance is the HP
workstations to be used for the Advanced Composition Explorer (ACE).

Key Attributes: Renaissance user interface building blocks shall be able to operate on any
UNIX workstation platform supporting the X Window System, Motif, and POSIX system calls.
It is acknowledged that a software port may be required for certain platforms as defined in
Section 2.5.8. Building blocks shall run on the current reference platform for Renaissance—HP
workstations running HP/UX 9.0 or greater.

2.5.2 Commercial Off-the-Shelf Usage

An underlying principle of open systems development and the Renaissance architecture for
ground data systems is that commercial off-the-shelf (COTS) software products should be used
whenever possible to provide cost-effective systems. However, the selection of COTS software
should be a formal tradeoff study process that examines the relative merits of make or buy in
each situation. Furthermore, the use of a COTS package should not undermine the standards and
guidelines documented in this section. For example, a COTS package without a Motif style
interface should not usually be considered acceptable for a Renaissance system.

Key Attributes: Renaissance user interface building blocks shall use embedded COTS software
if tradeoff studies determine that the life-cycle cost is reduced through the use of such a COTS
product and if the product itself conforms to the standards and guidelines presented in this
section.

2.5.3 Renaissance Interface Compatibility

The Renaissance ACWG is developing specifications defining the standard mechanisms for
interprocess communication between Renaissance building blocks. This set of interface
definitions is known as the Renaissance software backplane. Standard protocols for items such as

2-8 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

requesting and transmitting data, issuing control messages to another process, and broadcasting
system event messages will be included in the backplane definition.

Because most user interface building blocks were developed prior to the initiation of the
Renaissance project, they currently use interprocess communication techniques that differ from
the Renaissance software backplane. Each building block will need to transition to this new set
of interfaces. An initial definition of the Renaissance software backplane will be completed in
mid 1994. It is anticipated that this backplane will evolve over time to remain current with
technological advances and emerging standards such as the Distributed Computing Environment
from OSF or the Common Object Request Broker Architecture.

Key Attributes: Renaissance user interface building blocks shall communicate with other
Renaissance software parts using the protocols and mechanisms defined as part of the
Renaissance software backplane (Reference 3).

2.5.4 Documentation

All mature software products are shipped with high-quality documentation describing how to
configure and use the product. Renaissance building blocks should adhere to this same standard.
The documentation should be sufficient to allow the building block to be easily configured for a
new mission. Furthermore, end-user information on running the software shall be included. This
end-user documentation should be available as online help as well (Section 2.5.6).

The initial documentation efforts will aim at ensuring that a complete set of information is
available on each building block. Over time, the documentation for each building block should
evolve toward a standard presentation. This consistent format will allow users of multiple
building blocks to easily find the information they require because it will be presented with a
common approach for all Renaissance components.

Key Attributes: Renaissance user interface building blocks shall include a complete set of
documentation for both end users of the building block and system integrators configuring the
building block for a particular mission. Documentation standards are listed in Reference 2.

2.5.5 Maturity

Renaissance building blocks represent software components that will be used for operational
support of a series of NASA missions. These components need to be tested, proven software that
will work reliably in an operational setting. A process should be defined in which these
components are formally tested and accepted. Although some of the Renaissance building blocks
are just in the prototype stage of development, it is required that they all be mature products
before the launch of the initial Renaissance missions.

Key Attributes: Renaissance user interface building blocks shall be mature software products
already in use within operational systems whenever possible. A formal acceptance test process
shall be in place for all releases of building block software.

2-9 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

2.5.6 Online Help Facility

In the Renaissance environment, a single set of Mission Operations Center users is presented
with dozens of software components, each requiring detailed knowledge to properly execute.
Maintaining all of this information in hardcopy format will be cumbersome and will require the
user to search multiple volumes for a key piece of information. A better approach is to move end-
user documentation into an online format.

None of the user interface building blocks selected for Renaissance have currently implemented
an online help capability. This shortcoming actually affords Renaissance a unique opportunity to
create a consistent online help facility from the ground up. The CDE comes with a built-in help
system that will be used as the basis for help on Renaissance building blocks.

Key Attributes: Renaissance user interface building blocks shall support an online help
capability to reduce the need to rely on printed documentation. The CDE help facility, when
available, shall be used as a baseline library for implementing help functionality. Support for
context-sensitive help and hypertext links between help windows is highly desirable.

2.5.7 Performance

All well-designed user interfaces provide immediate feedback to the user to indicate that the user
action has been recognized and is being acted on. Renaissance user interface building blocks also
must conform to this design principle. If operations are going to take a significant amount of time
to complete, the user should have a visible indication of the fact that the operation is in progress.
Use of slider bars to denote percent complete is one helpful way of conveying information on
work in progress to the user. Actions that might lock out the user for a significant period of time
should allow the user to cancel the activity.

Key Attributes: Renaissance user interface building blocks shall provide feedback to the user
for any action that does not complete within a few seconds. The user should be able to cancel any
operation that takes more than 30 seconds to complete. Use of dialog boxes denoting that work is
in progress is highly desirable.

2.5.8 Portability

In addition to following the criteria listed in Section 2.5.1, software portability should be ensured
by following the commercial software standards listed previously (e.g., X11R5, Motif, POSIX)
and by attempting software ports to new platforms. The effort required to port a building block to
a new platform should be minimal if the software is properly written for platform independence.

Key Attributes: Renaissance user interface building blocks shall be portable to a new POSIX
platform (Section 2.5.1) in less than 1 month.

2.5.9 Availability of Support

Commercial software products typically are marketed with an option for on-call software support
from the vendor. Renaissance building blocks should adhere to this same standard. The
organizations that maintain Renaissance software building blocks, known as centers of expertise
(COEs), shall be responsible for providing this support service. This support will supplement the

2-10 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

information for system integrators discussed in Section 2.5.4. COEs will be expected to have a
dedicated staff supporting each building block that shall be available to answer questions
concerning use of that software.

Key Attributes: Renaissance user interface building blocks shall be actively maintained by a
COE within MO&DSD. A support office shall be maintained for each building block by the
COE. The personnel who provide this support office capability shall be available to assist
projects using the software during normal working hours.

2.5.10 Verbatim Reuse From Mission to Mission

Several projects within MO&DSD over the last 10 years have shown that high levels of software
reuse are achievable and can lead to drastically reduced mission support costs. Following this
heritage, Renaissance has established high levels of mission-to-mission software reuse as a key
strategy. This reuse is accomplished through the software building block concept.

Each building block shall be configurable through data files or startup parameters to as high a
degree as possible. Mission-specific additions to building blocks will be allowed only if it is
clearly not cost effective to add functionality for a mission in a reusable fashion. Configuration
control will be maintained so that these mission enhancements are isolated from the core set of
reusable software.

Key Attributes: Renaissance user interface building blocks shall be usable on multiple missions
without code changes to the core generic software for that building block. Mission-specific
enhancements shall be permitted, but only by inserting code into well-defined hooks that are
maintained separately from the core software for that building block.

2-11 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

Section 3. Methodology for User Interface
Development

3.1 Software Reuse Process

This section describes the first step in developing a new user interface for Renaissance, namely,
reviewing the existing Renaissance software library to determine which components can be
reused instead of built from scratch. This process entails four steps as detailed in the following
subsections. Once this reuse analysis is complete, development of a new user interface
component (Section 3.2) and/or a new widget (Section 3.3) can commence as required.

3.1.1 Review Existing Building Blocks

This subsection is TBS.

3.1.2 Itemize New Capabilities

This subsection is TBS.

3.1.3 Determine Scope of Effort

This subsection is TBS.

3.1.4 Initiate Development

This subsection is TBS.

3.2 User Interface Development Process

The user interface represents the subsystem that channels communications between system users
and system applications. This section describes the processes that developers working with users
employ to create this subsystem and to adapt it to a particular mission and application. Because
the user interface subsystem is the user's direct point of contact with the system, it is essential
that it clearly reflect the user’s needs and desires. The criteria for a development methodology
include the following:

• Reuse of existing components

• Consistency of user interfaces

• Adaptation to various applications

• Expectation of change

• Quick demonstration of proposed user interfaces

• Relationship with other system components (e.g., applications)

3-1 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

• Close interaction with users to gather their needs and desires

The key terms of these criteria are highlighted. The development methods described in the
following subsections address each of these criteria.

A typical assembly line or waterfall development model would not meet these criteria.
Renaissance will use an object orientation (Reference 4) and spiral development methodologies
(Reference 5) for user interface development combined with joint application design (JAD)
teams. Spiral development minimizes risk by providing tangible, but changeable interim products
through each development cycle. (Early interim products are also known as prototypes.) Joint
application development ensures that the system under development adequately reflects user
needs and perceptions. Both aspects support development of highly interactive systems. They
prevent most errors or misperceptions in the requirements generation and system development
process. They allow for early detection and correction of those that do get through.

3.2.1 Object-Oriented Concepts

An object-oriented specification method readily supports creation of a consistent set of user
interfaces through the concepts of inheritance and abstraction. Object orientation employs the
concepts of objects and classes. An object is a specific encapsulated unit of methods and
attributes that supports an application. Objects communicate exclusively by messages. Objects
are specific instances object-oriented class.

3.2.1.1 Abstraction

Object-oriented abstraction is the process of identifying, specifying, and encoding common
aspects of a class of objects. Thus, a class is a template for the creation of objects with identical
methods and attributes. As users perform their tasks, the system often creates instances of a class.
This dynamic creation process is also know as instantiation. Each of these objects will be the
same except for the values of its attributes. Thus, abstraction supports both reuse and
consistency.

For example, a designer can specify and encode a one-button dialog box class. This dialog box
can be instantiated a message “Network Printout Ready” with a blue background, or as an error
message “File Not Found” with a red background. In these cases, the message and the
background colors are attributes.

3.2.1.2 Inheritance

Object-oriented inheritance provides a mechanism for designers to efficiently specify a set of
related classes. Using inheritance, a designer can state that a new class inherits all of the
characteristics of the parent class with exceptions, which allows the designer to specify and build
each class of objects in terms of other classes. Thus, inheritance also supports reuse and
consistency while allowing adaptation to various applications. For example, the designer can
specify a two-button dialog box class. The designer specifies that the two-button dialog class
inherits from the one-button class, except that it will have an additional button.

3-2 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

3.2.2 Spiral Development

A two-dimensional polar coordinate diagram (Figure 3–1) depicts the spiral development
method. The radius is system maturity. The angle represents development activities. The process
traces a spiral path that begins with a raw concept at the origin and proceeds outward through
iterations of development activities, each time reaching higher levels of maturity.

Requirements
plan life-cycle

Requirements
Generation Develop

and
Review

Operation
Concepts

Requirement
Validation

Design validation
and verification

Plan
DevelopmentIntegration

 and test
 plan

Review

Increasing maturity and cost

Planning

Verify &
Final
Development

Joint Application Design (JAD)

Develop Product

Determine objectives,
alternatives, constraints

Evaluate
alternatives,

 identify,
resolve

risks

Installation and deployment

Unit &
Integration

Test

Acceptance
test

Figure 3–1. Spiral Development Methodology

Effective project development requires several iterative stages of planning, requirement
generation, evaluation, and development. The spiral development method accommodates this
requirement through recursive design. The model in Figure 3–1 depicts four cycles, which
represent a typical number of cycles. This process allows and even expects change as the system
matures.

Each cycle begins with planning. In this initial phase, developers plan the expected number of
iterations along with milestones and activities for each cycle. Each cycle lasts between 3 and
4 months; the overall project will last between 12 and 16 months.

3-3 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

The next phase is requirements generation. During the initial iteration, analysts focus on a vision
and strategy for the proposed system. They translate these into general system needs. In this
phase, analysts also assign risks and benefits to potential development techniques and choose the
most promising of these risks and benefits.

Developers use advanced tools to construct the user interface. These tools permit quick
demonstrations of proposed user interfaces, which in turn become the de-facto requirements.
The user interface is only a two-dimensional Hollywood set without communications with the
rest of the system infrastructure. To add depth, user interface developers working with
application developers establish message protocols and data structures to enable
communications. These messages specify the relationship with the other applications within the
system. Initially, developers can model these interfaces using drivers, stubs, dialog boxes, and
simulators. As the overall system matures, developers integrate the user interface with other
subsystems. Figure 3–2 illustrates the role of the user Interface within the overall system.

System
Structures Applications

(Server)

Requests

Service
Request

Application
Products

User
Interface
(Client) Display

Data

Figure 3–2. User Interface System Environment

Developers then demonstrate the interim products to analysts and users during a JAD session
(Section 3.2.3). During demonstrations, they solicit and record user reactions and assessments.
The data from the demonstrations is then used to plan the next steps in the development process.
In later cycles, as the system under development begins to take shape through construction and
demonstration, analysts add more detail to the requirements. A key concept is that each build is
an actual, although incomplete, product. This means that there is no throwaway development;
each cycle and phase contributes to the final product.

During the final cycle of the development process, methods and products become more rigorous.
Developers use configuration control procedures and tools to maintain system integrity and
control. They integrate and test the user interface with the overall system. Finally, the testers and
users perform acceptance testing.

3-4 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

3.2.3 Joint Application Design

JAD is a group activity in which participants help develop an application. Using JAD, a
facilitator brings users and developers together to specify requirements. The facilitator holds
joint meetings with users and developers to review requirements and interim products. Typically,
developers present requirements as user interface prototypes, which task participants critique and
refine. These prototypes become the actual user interface subsystem as the system matures. The
user interface development method described in this document employs JAD only for the
evaluation portion of the development process.

3.2.3.1 JAD Participants

The roles within the JAD team are the facilitator, a scribe, users, customers, and developers. A
participant may have more than one role in the development process. For example, the facilitator
may be a developer. Customers buy the system. Users are the people who operate the system.
Optional roles are representatives from the system architecture group and observers. The
facilitator understands the development process, needs of the development task, schedule, and
roles of the participants. The scribe records meeting minutes, notes, action items, and products.
User-participants represent the entire community that will eventually use the system. They have
domain knowledge and experience with spacecraft characteristics and ground support missions.
They are typically mission analysts, operators, or controllers.

Developers know and understand computer systems. They are familiar with X Window, Motif,
and Renaissance user interface standards. They are also familiar with other open-system
characteristics, such as software interface standards. They understand the processes of generating
requirements, evaluating alternatives, and producing working systems. They are capable of using
these tools to develop working prototypes (models) to demonstrate to other task members. In
some cases, they may be able to modify the prototype during the meetings. Prototypes serve as
dynamic tangible specifications and also become the actual user interface subsystem.

Representatives from the system architecture group understand system and interface standards.
They have the authority to modify these standards if necessary. Observers are present to learn
about the JAD process and their future roles, e.g., facilitators.

3.2.3.2 JAD Process

The JAD process consists of planning activities, determining objectives, selection, development,
JAD sessions, and then reiterating the process.

The JAD session acts as a focus for other steps in the development process. It promotes close
interaction with users to gather their needs and desires. The JAD session employs rules and
procedures that optimize its productivity and foster cooperation among its participants. Other
processes in the development cycle help prepare for the JAD session. In addition, the facilitator
must prepare or assemble specific materials, including

• Project objectives

• Requirements and criteria

• Renaissance user interface guidelines and standards

3-5 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

• User's tasks (Reference 5, Chapter 12)

• Names and roles of participants

• Interim product (prototype) and equipment for demonstrations

• Agenda

• List of objectives for the JAD session

The facilitator will then prepare and distribute meeting materials and an agenda. The facilitator
will arrange meeting rooms, schedules, and tools (e.g., computer, display or projection screen).
In some cases, the facilitator may also provide CASE tools, drawing tools, and a GUI prototyper
for dynamic modification of the prototype.

JAD sessions begin with a presentation of the JAD tasks, products, and challenges. Developers
then present proposed solutions in a format that allows for ample feedback from participants.
This process embodies close interaction among users and developers.

3.2.3.3 JAD Products

The products of the session are minutes, action lists, and offline assignments. The assignments
are resolution of action items, requirements analysis, further development, and presentation of
task status and products. Figure 3–3 shows a model of all UI development processes and
products.

User Interface
Products

Joint
Application

Design

User Interface
Development

Develop Objectives
and Plans

TestingRequirements
Generation

Objectives and Plans

Requirements

Product

Final
Product

Test
Results

Test
Reports

Interim
Product

JAD Minutes, Notes, Reports

Figure 3–3. Development Products

3-6 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

3.2.4 Completion of the User Interface Process

In the last cycle of the development phase (Figure 3–1), formal products are produced, including

• Design notes

• Code (if any)

• Unit and integration test plans and results

• Acceptance test plans and results

• Configuration control lists

• User interface process

The formal end of the process will normally be the installation of the product and its acceptance
by the operational mission team. The process may begin again with the identification of other
possible system enhancements.

3.3 Widget Development Process

This section is TBS.

3-7 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

Section 4. Style Principles

The Renaissance user environment is based on the look and feel for GUIs described in
Reference 1. This industry document will guide the development of all Renaissance user
interfaces. The Renaissance project will be documenting any additions or subtractions to Motif's
list of style requirements within this section of the document.

The Renaissance style principles are currently TBS.

4-1

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

Section 5. Renaissance Controls, Groups, and Models
Reference Pages

Chapter 9 of the OSF/Motif Style Guide provides detailed information about standard Motif
components, user interface models, and concepts in a reference format. Each topic starts on a
new page and is organized alphabetically. Typically, one page exists for each component, which
usually corresponds directly to a single widget.

This chapter provides the same information in an identical format for each component in the
Renaissance widget set. This information is currently TBS.

5-1 Doc. No.

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

Appendix. Certification Checklist

The checklist in this appendix itemizes each new Renaissance style principle and each
Renaissance change to the standard Motif principles. This checklist can be combined with the
checklist in the OSF/Motif Style Guide to completely analyze the conformance of a building
block with the Renaissance style principles.

The checklist itself is currently TBS.

A-1

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

Abbreviations and Acronyms

ACE Advanced Composition Explorer

ACWG Architecture/Communications Working Group

API applications programming interface

CDE Common Desktop Environment

COE center of expertise

COTS commercial off-the-shelf

GUI graphical user interface

HP Hewlett-Packard

I/O input/output

JAD joint application design

MIT Massachusetts Institute of Technology

MO&DSD Mission Operations and Data Systems Directorate

NASA National Aeronautics and Space Administration

OSF Open Software Foundation

PC personal computer

POSIX portable operating system interface for UNIX

UIL User Interface Language

USWG User Services Working Group

AB-1

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

References

R.1 Cited References

1. Open Software Foundation, Open Software Foundation (OSF)/Motif Style Guide,
Revision 1.2, Cambridge, MA, 1992

2. Mission Operations and Data Systems Directorate, Renaissance Standards, Draft,
August 1994

3. —, ACE Mission Architecture, Working Draft, July 1994

4. Fayed, M, et al., “Adapting an Object-Oriented Development Method,” IEEE Software,
May 1994

5. Boehm, B., “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, May 1998

R.2 Uncited References

Computer Sciences Corporation, Transportable Payload Operations Control Center (TPOCC)
User Interface Specification Methodology, September 1993

Modell, M., A Professional's Guide to Systems Analysis, McGraw-Hill, 1988

Computer Sciences Corporation, SEAS Systems Development Methodology, Chapter 8, “User-
System Interface Development,” December 1993

Pollack, J., Introduction to Joint Application Design (JAD), January 10, 1994

Wood, J., and D. Silver, Joint Application Design, How to Design Quality System in 40% Less
Time, Wiley, 1989

RF-1

Renaissance User Interface Implementation Guide (Preliminary) July 11, 1995

AB-1 Doc. No.

